Google Gemma 2 是一款高性能、高效的模型,提供三种尺寸:2B、9B 和 27B。

2b 9b 27b

1.8M 3 个月前

自述文件

Ollama in a Noogler hat with the Gemma 2 logo

Google 的 Gemma 2 模型提供三种尺寸,2B、9B 和 27B,采用全新的架构设计,旨在实现领先的性能和效率。

领先的性能

在 270 亿个参数下,Gemma 2 的性能超越了尺寸是其两倍的模型,在基准测试中表现出色。这种突破性的效率在开放模型领域树立了新标准。

三种尺寸:2B、9B 和 27B 参数

  • 2B 参数 ollama run gemma2:2b
  • 9B 参数 ollama run gemma2
  • 27B 参数 ollama run gemma2:27b

基准测试

Benchmark

预期用途

开放式大型语言模型 (LLM) 在各个行业和领域都有广泛的应用。以下可能的用途清单并不全面。此清单的目的是提供关于模型创建者在模型训练和开发过程中考虑的可能用例的上下文信息。

  • 内容创作和传播
    • 文本生成:这些模型可用于生成创意文本格式,例如诗歌、脚本、代码、营销文案和电子邮件草稿。
    • 聊天机器人和对话式 AI:为客户服务、虚拟助手或互动应用程序提供对话界面。
    • 文本摘要:生成文本语料库、研究论文或报告的简短摘要。
  • 研究和教育
    • 自然语言处理 (NLP) 研究:这些模型可以作为研究人员试验 NLP 技术、开发算法和推动该领域进步的基础。
    • 语言学习工具:支持互动式语言学习体验,帮助纠正语法或提供写作练习。
    • 知识探索:通过生成摘要或回答有关特定主题的问题,帮助研究人员探索大量文本。

使用 Gemma 2 与流行工具

LangChain

from langchain_community.llms import Ollama
llm = Ollama(model="gemma2")
llm.invoke("Why is the sky blue?")

LlamaIndex

from llama_index.llms.ollama import Ollama
llm = Ollama(model="gemma2")
llm.complete("Why is the sky blue?")