视觉模型

2024年2月2日

Vision Models

全新 LLaVA 模型

LLaVA (大型语言与视觉助手) 模型集合已更新至 1.6 版本,支持

  • 更高图像分辨率: 支持高达 4 倍以上的像素,使模型能够掌握更多细节。
  • 改进的文本识别和推理能力: 在额外的文档、图表和示意图数据集上进行训练。
  • 更宽松的许可: 通过 Apache 2.0 许可或 LLaMA 2 社区许可分发。

这些模型提供三种参数尺寸。7B、13B 和全新的 34B 模型

  • ollama run llava:7b
  • ollama run llava:13b
  • ollama run llava:34b

使用方法

CLI

Art

要将视觉模型与 ollama run 一起使用,请使用文件路径引用 .jpg.png 文件

% ollama run llava "describe this image: ./art.jpg"
The image shows a colorful poster featuring an illustration of a cartoon character with spiky hair. Above the character's head is a crown, suggesting royalty or high status. On the right side of the poster, there is text in French that reads "Jean-Michel Basquiat,"

Python

import ollama

res = ollama.chat(
	model="llava",
	messages=[
		{
			'role': 'user',
			'content': 'Describe this image:',
			'images': ['./art.jpg']
		}
	]
)

print(res['message']['content'])

JavaScript

import ollama from 'ollama'

const res = await ollama.chat({
	model: 'llava',
	messages: [{
		role: 'user',
		content: 'Describe this image:'
		images: ['./art.jpg']
	}]
})

console.log(res.message.content)

注意:在 Ollama PythonJavaScript 库以及 REST API 中,可以 在 images 参数中提供 base64 编码的文件。有关向视觉模型提供图像的更多示例,请参阅完整的 API 文档

示例

物体检测

Object detection

% ollama run llava "tell me what do you see in this picture? ./pic.jpg"
In the image, a man wearing blue and white is holding video game controllers in his hands while smiling. His arms are raised above his head as he plays with the virtual reality gaming devices. The man appears to be enjoying himself and immersed in his gaming experience.

文本识别

Word Art

% ollama run llava "what does the text say? ./wordart.png"
This is an image with a capitalized, bolded text of "ollama." The background is black and the letters are yellow, which create a contrasting appearance. Although the words "ollama" make up the majority of the image, it could also be seen as part of a sign or advertisement due to its brightness and prominent font style.

感谢 LLaVA 团队

LLaVA 1.6 模型系列由一个杰出的团队发布。有关模型如何训练的信息可在 LLaVA 网站上找到,以及 LLaVA 1.6 与领先的开源和专有模型的基准测试结果。

Until next time